If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+14x+24=180
We move all terms to the left:
x^2+14x+24-(180)=0
We add all the numbers together, and all the variables
x^2+14x-156=0
a = 1; b = 14; c = -156;
Δ = b2-4ac
Δ = 142-4·1·(-156)
Δ = 820
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{820}=\sqrt{4*205}=\sqrt{4}*\sqrt{205}=2\sqrt{205}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{205}}{2*1}=\frac{-14-2\sqrt{205}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{205}}{2*1}=\frac{-14+2\sqrt{205}}{2} $
| 4x+9=5x+-5-x | | -(x-6)=46-9x | | –9k=–10k−10 | | 9r+8=10r | | -9+8h=9h | | 5x-1=X,6 | | 10z-15=20z | | -7+5n=-7(1+10n) | | 3.2+10m=8.15 | | -5x-20=-x+-5x-4x | | (x+4)^2=40 | | x+2=2(x1) | | (x+4)^2-40=0 | | -2m+8+3+1=0 | | (x+4)-40=0 | | -5x-20=-x+1-4x | | 6x-8=14-2x | | 29-5x=-6-5(7+8x) | | -10x+12=-77+11x | | -3.8+13.4x=116.8 | | a/3-2=-1 | | -9x-6=-54+1x | | 2x+33=x+25 | | 2x+1=-45-9x | | T=37-1.5x21/2 | | 4.1+10m=7.42 | | -7x+6=-64+8x | | 2/4=x/36 | | 4+7(x-1)=-3+7x | | -47-10n=-8(7n+5)-7 | | -5x+11=40+1x | | 3x-17=8x+8+8x |